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Verifying the Authenticity of Nuclear Warheads 
Without Revealing Sensitive Design Information 

Steve Fetter and Thomas B. Cochran 

Verifying the dismantlement of nuclear warheads will require reconciling two conflicting 
objectives: the desire of the monitoring party to insure that the objects slated for dismantlement 
are bona fide warheads of the declared type, and the desire of the monitored party to protect 
sensitive information about the design of the warhead.1  

A possible solution would involve visiting a deployment site on short notice and randomly 
selecting a given number of warheads for dismantlement. The warheads would then be placed in 
tagged, sealed containers for transport to the dismantlement facility, where the integrity of the 
tags and seals would be verified. If the number of warheads to be dismantled is a small fraction 
of the entire inventory, then the monitoring party would be reasonably sure that the warheads are 
genuine, for the only way the monitored party could defeat the scheme would be to deploy large 
numbers of fake warheads. Still, the process of on-site tagging and sealing for each warhead is 
tedious, and the monitored party would have no assurance that all the warheads were genuine, 
since the monitored party could easily replace 10 or 20 percent of the warheads slated for 
dismantlement with decoys. 

A much better solution would involve gathering only a small sample of warheads during an 
initial random on-site inspection and establishing a unique “fingerprint” or signature for this 
warhead type. An excellent example of a fingerprint would be the warhead's characteristic 
gamma-ray emissions.2 Subsequent warheads could simply be brought to the dismantlement 
facility at the convenience of the monitored party, where a warhead's fingerprint would be 
compared with those of the reference warheads to establish its authenticity.3  

                     
1 For a more general discussion of verifying reductions in nuclear warheads, see Ending the Production of Fissile 
Materials for Weapons; Verifying the Dismantlement of Nuclear Warheads: The Technical Basis for Action 
(Washington, DC: Federation of American Scientists, June 1991). 
2 Other types of fingerprints can be imagined, but we have identified none that have convincing advantages over 
intrinsic gamma-ray emissions. One could, for example, radiograph the warhead, but the algorithm to compare 
radiographs would be far more complex than the algorithm to compare the intensity of gamma-ray emissions, the 
information contained in the radiographs would be far more sensitive than that contained in the gamma-ray spectra, 
and the possibility of cheating by substituting non-weapons-grade uranium and plutonium for weapons-grade 
uranium and plutonium, which would lead to identical X-rays, would require the use of gamma-ray and/or neutron 
detection as a supplement in any case. 
3 Alternatively, one could compare the fingerprints of disassembled components leaving the facility, to verify that a 
given number of a given type of warhead had been dismantled. One could, for example, place the plutonium pit in a 
given container and verify this fingerprint, although the gamma-ray fingerprint described below would presumably 
reveal more sensitive information in this case if the design of the container was known. 
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All nuclear warheads contain radioactive isotopes of uranium and/or plutonium.4 Most of these 
isotopes emit gamma rays and neutrons at rates that can be detected outside the warhead. For 
example, plutonium-239—the most important plutonium isotope—emits over two dozen gamma 
rays that can be detected outside of typical warheads. Since the energies of the gamma rays are 
determined by the characteristics of the emitting nucleus, detecting just one or two of these 
gamma rays permits the unambiguous identification of the radioactive material. And since the 
intensity of each gamma ray depends on the quantity and geometry of the radioactive material 
and the thickness, geometry, and atomic number of all surrounding materials, it would be 
extremely difficult—if not impossible—to replicate the gamma-ray spectrum with a smaller 
amount of material in a different configuration. 

The fingerprint should be based on emissions that would not be expected to vary by more than a 
few percent from warhead to warhead. Excellent choices would be the gamma rays emitted 
during the decay of uranium-235 and plutonium-239. The amount of uranium-235 and 
plutonium-239 in a given type of warhead, and the intensity of their gamma rays outside the 
warhead, should vary very little from warhead to warhead, and would not depend on the age of 
the material.5 Gamma rays are emitted during the decay of other isotopes of uranium and 
plutonium (e.g., uranium-232, uranium-238, plutonium-241, etc.), but the concentration of these 
isotopes could easily vary by more than 20 percent from warhead to warhead. Copious neutrons 
are emitted by plutonium-240, but the percentage of this isotope in weapon-grade plutonium 
might vary by more than 50 percent from warhead to warhead (e.g., from 3 to 6 percent or more).  

The energy and intensity of the gamma rays emitted by plutonium-239 are such that one can 
expect to receive a detectable signal outside any warhead that contains plutonium. It is, however, 
possible to build warheads that use uranium-235 for fissile components, and which contain no 
plutonium. The gamma rays emitted by uranium-235 are considerably less energetic than those 
emitted by plutonium-239; if the uranium is surrounded by thick materials with high atomic 
numbers, these gamma rays may be undetectable outside the warhead. Shielded counting 
chambers and long counting times will help, but may not guarantee detection of these low-
energy gamma rays in some conceivable warhead designs. We do not believe that such designs 
are common in the superpower arsenals, but they are a possibility that must be considered.  

To deal with the possible failure of gamma-ray detection, one could illuminate the warhead with 
bursts of high-energy neutrons. The neutrons would penetrate to the fissile material, causing a 
certain number of fissions and the consequent emission of prompt and delayed neutrons and 
gamma rays.  Like the gamma rays emitted during radioactive decay, these emissions would 
depend on the quantity and geometry of the fissile material, the thickness, geometry, and isotopic 
composition of all surrounding materials, and the incident neutron energy. Inelastic absorption of 
                     
4 For a more general and complete discussion of warhead detection, see Steve Fetter, Valery A. Frolov, Marvin 
Miller, Robert Mozley, Oleg F. Prilutsky, Stanislav N. Rodionov, and Roald Z. Sagdeev, "Detecting Nuclear 
Warheads," Science and Global Security, Vol. 1, pp. 225-302 (1990). 
5 An exception might be non-fissile uranium components, in which the concentration of uranium-235 is low 
(between 0.2 and 0.7 percent). The concentration of uranium-235 in such components could vary by more than a 
factor of two from warhead to warhead if components were fabricated from depleted uranium of different assays, or 
if some components were fabricated from natural uranium and others from depleted uranium. One could deal with 
such cases by measuring the much stronger gamma rays emitted during the decay of uranium-238. 
 



 

3 

neutrons by surrounding materials would also lead to the emission of characteristic gamma rays 
that could be used in the warhead signature as well. Although a neutron source would greatly 
increase the cost the system, it would guarantee obtaining a fingerprint that would be extremely 
difficult to counterfeit. 

A major objection to radiation fingerprinting is that it may reveal sensitive information about the 
design of the nuclear warhead. By working backwards from the gamma-ray spectra, it may be 
feared that the monitoring party could reconstruct previously unknown aspects of the warhead 
design, which could then be used to improve warhead design or strategic defenses. Although it 
seems highly unlikely to us that valuable information can be derived from such fingerprints (in 
the sense that it would allow meaningful improvements in nuclear offense or defense), it is 
reasonable to anticipate and deal with such objections whenever possible.  

In the following example, we outline an automated system that would return a simple “yes” or 
“no” answer to the question: is the radiation fingerprint of this warhead significantly different 
from the fingerprints of the reference warheads? 

First, the monitored party would provide a list of all locations where warheads of the type to be 
dismantled are deployed or stored. The monitoring party would then visit several of these sites 
on short notice, and randomly select a small number (e.g., a total of ten) warheads. (Selecting 
more than one warhead allows the natural variability in the warheads to be estimated, which will 
be valuable in minimizing false accusations of cheating.) Each warhead would be placed in a 
tagged and sealed container, which would be shipped to the dismantlement facility. Upon arrival, 
the authenticity of the tags and seals would be checked to ensure that the arriving warheads are 
the same as those selected from the declared sites. 

Next, the warheads would be placed, one by one, on a turntable in a shielded chamber. (Rotating 
the warhead with respect to the detector would make it unnecessary to reproduce the exact 
orientation of the warhead.) While the warhead is rotated in the chamber, gamma rays emitted by 
the warhead are detected by high-purity germanium detectors located at different heights above 
the turntable.6 The counting time should be long enough so that statistical counting errors are 
small (e.g., 1 percent, or smaller than the natural sample variability).  

[As mentioned above, a neutron source could also be used to produce prompt fission, fission-
product, and neutron-absorption gamma rays and prompt and delayed fission neutrons. For 
simplicity, only gamma rays from radioactive decay are discussed below, although the 
techniques are easily generalized to include neutron-induced emissions.] 

Immediately before and/or after each measurement, background measurements and calibration 
measurements would be made. The calibration sources would ideally include a small quantity of 
uranium-235 and plutonium-239. Note that it is only necessary to measure changes in the 
relative efficiency of the detectors. These measurements would also serve to indicate the proper 
functioning of the equipment.  

                     
6 Alternatively, a single detector could be used and the elevation of the turntable varied. Also note that warheads 
and bombs will probably require different shape counting chambers. 



 

4 

Each spectrum would then be analyzed by a peak-finding program to determine the energy and 
intensity of each gamma-ray emission (e.g., significant at the 3-standard-deviation level), the 
uncertainty in these quantities, and to identify those emissions that are due to the decay of 
uranium-235 and plutonium-239.7 At this point, uncertainties are due mainly to counting 
statistics. For example, if 100 gamma rays of a given energy were detected, then (neglecting 
background) the uncertainty in the measurement would be the square root of the number of 
counts—in this case, 10 counts. A 1 percent uncertainty would require 10,000 counts (assuming 
the background is small). This number of counts per peak might be achievable in less than an 
hour for plutonium-bearing warheads.8  

After the spectra are corrected for variations in detector efficiency, we have a library of gamma-
ray energies Eij, observed gamma-ray count rates xij, and uncertainties in these count rates sij 
(including uncertainties from counting statistics, background, and relative detector efficiency) 
for each warhead i and gamma ray j at each detector location. The mean count rate jx , averaged 
over the group of reference warheads, is given by  
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If statistics are poor, the simple average may be a more robust measure of the mean than the 
weighted average. The variance in the count rate is given by  
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Before proceeding, we should ask two questions about the group of reference warheads: (1) are 
these warheads nearly identical, and (2) if they are not identical, are they all of the same type? 
Answering the first question is important because it determines the type of statistical analysis 
that should be used in comparing fingerprints. If the warheads are nearly identical (i.e., if 
variations in the count rates due to variations in manufacture are much smaller than variations 
due to counting statistics), then we can assume that deviations from the mean count rates are 
statistically independent, and we can use the much simpler (and more powerful) χ2 statistic to 
test whether fingerprints match. If, however, manufacturing tolerances lead to variations in the 
count rates that exceed those due to counting statistics, then differences in count rates probably 

                     
7 An example of such program is HYPERMET. See G.W. Phillips and K.W. Marlow, Program HYPERMET for 
Automatic Analysis of Gamma-ray Spectra from Germanium Detectors (Washington, DC: Naval Research 
Laboratory, Report NRL-3198, 1976). 
8 In measurements made on a Soviet warhead, count rates for 14 different lines varied from 0.05 to 1.6 counts/s. 
[Steve Fetter, Thomas B. Cochran, Lee Grodzins, Harvey L. Lynch, and Martin S. Zucker, "Gamma-Ray 
Measurements of a Soviet Cruise Missile Warhead," Science, Vol., 248, pp. 828-834 (18 May 1990).] The 
measurements were, however, made about 75 cm from the center of the warhead, through a steel launch tube about 
7 cm thick. At a distance of 50 cm and without the steel launch tube, count rates would have been 5 to 400 
counts/s—enough for over 10,000 counts per peak in less than an hour. 
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will be correlated and the more complicated and less powerful T2 statistic must be used to test 
the equivalence of two fingerprints. Nuclear warheads are perhaps the most carefully constructed 
items on the planet, and we doubt that manufacturing and assembly tolerances are so lax that 
they would result in large variations in gamma-ray emissions.9 It is, nevertheless, a possibility 
that must be anticipated in advance.  

One way to determine whether the warheads are nearly identical is to compare the variance 
calculated in equation (2) with the variance the would be expected based solely on counting 
statistics, which is given by  
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If the observed variance in the count rate is much greater than what would be expected from 
counting statistics alone (i.e., if 2 2

j jSσ ), then warhead-to-warhead variations are important 
and must be taken into account. Unlike errors from counting statistics, which are independent of 
gamma-ray energy, variations in manufacture will lead to differences in count rates that are 
correlated with each other. For example, a small decrease in the amount of plutonium in a 
warhead will cause all count rates to decrease, though some will decrease more than others.  

A more robust method of determining whether differences in count rates are correlated is to test 
the hypothesis that the correlation is zero. The coefficient for the correlation between the count 
rates for gamma-ray emissions j and k (j ≠ k) is given by  
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The statistic zjk, which is given by  
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is normally distributed with a standard deviation of about (m – 3)–½. Therefore, the probability 
that the statistic is greater than zjk given that the correlation is zero is given by  

                     
9 To note an extreme example, the mean-free-path of a 186-keV gamma-ray (the most intense emission from U-235) 
is only 0.36 mm in uranium. If the thickness of a uranium component between the source and the detector varied by 
as little as one-thousandth of an inch (1 mil) from warhead to warhead, the intensity of the gamma ray at the 
detector would vary by over 10 percent. In the U.S., heavy-metal weapon components are typically machined to 
tolerances of ±1 to ±2 mils, and there might be five to six heavy-metal layers in a typical assembly. (Richard 
Hatfield, Lawrence Livermore National Laboratory, personal communication, 6 August 1991.) 
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There will be a total of n(n–1)/2 covariances; if q is the probability that no one of these 
covariances appear non-zero from random variations, then P(zjk | m) should satisfy the condition  

 ( ) ( ) ( )
2
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If q = 0.05 and n = m = 10, then P(zjk | m) ≤ 0.001 and zjk ≥ 0.87 for any j and k to reject the null 
hypothesis that the count rates are uncorrelated. A better procedure might be to use a more lax 
criterion (e.g., P(zjk | m) ≤ 0.05, zjk ≥ 0.66), and simply require that more than, say, 20 percent of 
the zjk exceed this criterion in order to reject the null hypothesis. 

If the null hypothesis is accepted (i.e., the reference warheads are nearly identical), then we can 
safely assume that they are all of the same type. If they are not identical, then we must check to 
see if the data are consistent with the assumption that the reference warheads are all of the same 
type (i.e., that none of the warheads are dramatically different from the others). This is important 
because it could reveal an attempt by the monitored party to fool the system into accepting a 
large sample variability, which would make cheating much easier. To account for this, one could 
compare the count rates for (m–1) warheads with the count rates for the remaining warhead, for 
all m warheads; then compare the count rates for (m–2) warheads with count rates for the 
remaining two warheads, for all combinations of two warheads; and so on. The probability that 
the two groups of warheads are different is given by the T2 statistic developed below. The 
computer program could alert the monitoring party of a significant difference between two 
subgroups of warheads, which could then request additional information from the monitored 
party before proceeding.  

Let us assume that we accept the hypothesis that all the references are of the same type, and that 
the observed variations between warheads are due to counting statistics and variations in 
manufacture. When the monitored party brings a new warhead to the dismantlement facility, the 
monitoring party would attempt to verify its authenticity by comparing its radiation fingerprint to 
that of the reference set of warheads. Once again, the peak-finding and peak-fitting program 
would identify all lines associated with the decay of uranium-235 and plutonium-239 and would 
estimate the count rate of each emission yj and the associated uncertainty 

jys .  

If we have also accepted the hypothesis that the warheads are nearly identical, then a simple chi-
square test can be used to determine if a new warhead belongs to the same set as the reference 
warheads:  
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[Equation (9) assumes that the same gamma-ray emissions are detected in each case. If this is not 
true, the analysis could be restricted to only those peaks found to be significant in both spectra, 
or the spectra could be reanalyzed to determine the possible magnitude of "missing" peaks. The 
preferred technique probably depends on the number of such cases and the quality of the data in 
each case.] 

The probability that the chi-square observed for the new warhead will exceed the value χ2 by 
chance (i.e., the probability that the warhead is drawn from the population represented by the 
reference warheads and that the observed deviations in the spectra are due to random variations) 
is given by the incomplete gamma function:  
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Before making use of this equation, we must decide what probability of a false alarm is tolerable. 
If, for example, we reject warheads for which P(χ2 | n) < 0.01, then on average one out of every 
100 legitimate warheads would rejected. Since dismantlement campaigns might involve over 
1,000 warheads, this is clearly unacceptable, since false accusations of cheating could be very 
damaging.  

The total number of warheads that will be dismantled by the superpowers in the coming decades 
is probably between 10,000 and 50,000. If we require that the probability of a false alarm during 
the entire dismantlement campaign is fairly remote (e.g., 1 to 5 percent), then the criteria for 
rejecting a warhead should be P(χ2 | n) < 10–6. The following table gives the required χ2for a 
given n and P(χ2 | n):  

 P(χ2 | n) = 10–5 P(χ2 | n) = 10–6 P(χ2 | n) = 10–7 
n χ2 χ2/n χ2 χ2/n χ2 χ2/n 
 2 23.0  11.5  27.6  13.8 32.2  16.1 
 4 28.5  7.12 33.4  8.34 38.1  9.52 
 6 33.1  5.52 38.3  6.38 43.2  7.20 
 8 37.3  4.67 42.7  5.34 47.9  5.99 
10 41.3  4.13 46.8  4.68 52.3  5.23 
12 45.1  3.76 50.8  4.23 56.3  4.69 
14 48.7  3.48 54.6  3.90 60.3  4.31 
16 52.2  3.27 58.3  3.65 64.1  4.01 
18 55.7  3.09 61.9  3.44 67.9  3.77 
20 59.0  2.95 65.4  3.27 71.5  3.58 
25 67.2  2.69 73.9  2.96 80.3  3.21 



 

8 

To see that false alarm rates as low as 10–6 may be possible while preventing significant 
diversion of material, assume, for the sake of simplicity, that 2 ≈

jy js y , 2 ≈ij ijs x and 2 ≈j jx mσ , 
where x and y are now the total number of counts; then  
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Assuming that ≈j jy x , the allowable root-mean-square (rms) relative difference in the count 

rate is approximately equal to ( )( )2 11 −+n m xχ ; if we detect an average of just 1,000 counts in 
each of four lines, the allowable rms error would be less than 1 percent for a false alarm rate of 
10–6.  

If, on the other hand, we rejected the hypothesis that the warheads are nearly identical (i.e., that 
warhead-to-warhead variations lead to correlated differences in count rates), the statistic we 
should compute is T2, which in vector notation is as follows:  
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The elements of the vector ( )x - y  are ( )−j jx y . Note that this differs from the normal two-
sample problem in that the second sample contains just one set of observations, y. Therefore, the 
covariances are estimated from the observations of the reference group of warheads x (and are 
assumed to equal the covariances from the group that y was drawn from). The elements of the 
covariance matrix c are as follows:  
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It can be shown that the T2 statistic is distributed according to the F distribution:  
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The probability Q that the F observed will exceed the value F' by chance (i.e., the probability 
that the new warhead is drawn from the population represented by the reference warheads) is 
given by  
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where the function I is equal to  
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Note that the number of gamma-ray emissions used computing the T2 statistic (n) must be less 
than the number of warheads in the reference set (m). If n ≥ m–1, then n should be reduced by 
choosing only the most significant emissions, taking care to space them as evenly as possible 
with gamma-ray energy. It should be fairly straightforward to design an algorithm to 
automatically select the best emissions for such an analysis.  

Without actual data on different warheads of a given type, it is impossible to estimate the power 
of the T2 statistic to discriminate between phony warheads and warheads with significant 
correlated differences. We believe that it should be possible to limit the acceptable difference in 
the count rates to less than 10 percent, at least in plutonium-bearing warheads. If this is 
insufficient, discrimination power could be increased considerably by storing the spectra from 
each warhead and using this information to refine the estimates with each new warhead. By 
adding the spectra of each acceptable warhead to the set of “reference” warheads, estimates of 
the covariances could be improved substantially, and more lines could be added to the analysis. 
In addition to asking whether the new warhead is statistically different from the set of reference 
warheads, the computer could ask whether any subgroup yet examined is statistically different 
from any other subgroup. This would eliminate the possibility of, for example, removing 10 
percent of the plutonium from a large fraction of the warheads to be dismantled; even though a 
10 percent difference may not be noticed in single warhead, a disproportionately large fraction of 
warheads showing a 10 percent difference would be noticed. Such techniques may be especially 
valuable in cases where few gamma-ray emissions are detectable (e.g., uranium-only warheads).  

Note that all the data analysis discussed above could be performed automatically by a computer, 
without human intervention. Algorithms have been developed that can automatically and reliably 
find and identify statistically significant peaks in gamma-ray spectra; it would be relatively 
straightforward to analyze and store this information in a secure manner for comparison with 
future data. The computer could be programmed to provide a simple “yes” or “no” answer to the 
question, “Is the warhead under examination statistically different from group of reference 
warheads?”, or it could provide the probability that the observed difference is due to random 
variations. The computer could also answer the question, “Is any subgroup of warheads 
examined so far statistically different from the other warheads, and if so, which warheads and by 
how much?” There would be no need to reveal any aspect of the spectra themselves, although 
such revelations would aid greatly in building confidence in the system and resolving 
ambiguities. At a minimum, the computer could indicate the presence of uranium-235 or 
plutonium-239 and the number of statistically significant peaks detected. In addition, the energy 
of the peaks might be given, along with the count rates for a few of the strongest emissions.  

A great amount of attention obviously would have to be given to “red-teaming,” or finding out if 
and how the system could be fooled into accepted illegitimate warheads. While it seems to us 
highly unlikely that the gamma-ray fingerprint of a legitimate warhead could be matched by a 
dummy warhead containing less fissile material, this possibility could be better evaluated by 
those knowledgeable in weapon design. 


